
Coloured Petri Nets

Kurt Jensen

Computer Science Department
University of Aarhus

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

Phone: +45 89 42 32 34
Telefax: +45 89 42 32 55

E-mail: kjensen@daimi.aau.dk
URL: http://www.daimi.aau.dk/~kjensen

 

 TOOLS
 • editing
 • simulation
 •	verificationTHEORY

• models
• basic concepts
• verification methods

 PRACTICAL USE
 • specification
 • investigation
 • verification
 •	implementation



Coloured Petri Nets   2

Part 1: Introduction to CP-nets
An ordinary Petri net (PT-net) has no types and no
modules:

• Only one kind of tokens and the net is flat.

With Coloured Petri Nets (CP-nets) it is possible to
use data types and complex data manipulation:

• Each token has attached a data value called the
token colour.

• The token colours can be investigated and
modified by the occurring transitions.

With CP-nets it is possible to make hierarchical
descriptions:

• A large model can be obtained by combining a
set of submodels.

• Well-defined interfaces between the submodels.

• Well-defined semantics of the combined model.

• Submodels can be reused.



Coloured Petri Nets   3

Resource allocation example

AP

3`(q,0)

BP

2`(p,0)

CP

D	P

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

Declarations:
type U = with p | q; 
type I = int;
type P = product U * I;
type E = with e;
var x : U;
var i : I;

S

E

3`e

T

E

2`e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1`(x,i+1)
else empty

e

if x=q then 1`e
else empty

case x of
  p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
  p => 2`e
| q => 1`e

if x=p
then 1`(x,i+1)
else empty



Coloured Petri Nets   4

Occurrence of enabled binding

SE

3 3`e

BP
2 2`(p,0)

T2

CP

SE

3 3`e

BP
2 2`(p,0)

T2

CP

Binding:
<x=p, i=0>

SE

1 1`e

BP
1 1`(p,0)

T2

CP
1 1`(p,0)

New Marking

(x,i)

case x of
  p => 2`e
| q => 1`e

(x,i)

1
1`(p,0)(x,i)

case x of
  p => 2`e
| q => 1`e

2 2`e

1
1`(p,0)(x,i)

(x,i)

case x of
  p => 2`e
| q => 1`e

(x,i)



Coloured Petri Nets   5

Binding which is not enabled

SE

3 3`e

BP
2 2`(p,0)

T2

CP

SE

3 3`e

BP
2 2`(p,0)

T2

CP

Binding:
<x=q, i=2>

(x,i)

case x of
  p => 2`e
| q => 1`e

(x,i)

1
1`(q,2)(x,i)

case x of
  p => 2`e
| q => 1`e

1 1`e

1
1`(q,2)(x,i)

Binding cannot occur



Coloured Petri Nets   6

A more complex example

SE

3 3`e

BP
3 1`(p,2)+1`(p,4)+1`(q,3)

T2

CP

SE

3 3`e

BP
3 1`(p,2)+1`(p,4)+1`(q,3)

T2

CP

Binding:
<x=p, i=2>

SE

3 3`e

BP
3 1`(p,2)+1`(p,4)+1`(q,3)

T2

CP

Binding:
<x=q, i=3>

(x,i)

case x of
  p => 2`e
| q => 1`e

(x,i)

1
1`(p,2)(x,i)

case x of
  p => 2`e
| q => 1`e

2 2`e

1
1`(p,2)(x,i)

1
1`(q,3)

(x,i)

case x of
  p => 2`e
| q => 1`e

1 1`e

1
1`(q,3)(x,i)



Coloured Petri Nets   7

Concurrency

SE

3 3`e

BP
3 1`(p,2)+1`(p,4)+1`(q,3)

T2

CP

Binding:
<x=p, i=2>

SE

BP
1 1`(p,4)

T2

CP

2 1`(p,2)+1`(q,3)

Binding:
<x=q, i=3>

2
1`(p,2)+1`(q,3)

(x,i)

case x of
  p => 2`e
| q => 1`e

3 3`e

2
1`(p,2)+1`(q,3)(x,i)

(x,i)

case x of
  p => 2`e
| q => 1`e

(x,i)

• The two bindings may occur concurrently.

• This is possible because they use different
tokens.



Coloured Petri Nets   8

Conflict

SE

3 3`e

BP
3 1`(p,2)+1`(p,4)+1`(q,3)

T2

CP

Binding:
<x=p, i=2>

SE

3 3`e

BP
3 1`(p,2)+1`(p,4)+1`(q,3)

T2

CP

Binding:
<x=p, i=4>

1
1`(p,2)

(x,i)

case x of
  p => 2`e
| q => 1`e

2 2`e

1
1`(p,2)(x,i)

1
1`(p,4)

(x,i)

case x of
  p => 2`e
| q => 1`e

2 2`e

1
1`(p,4)(x,i)

• These two bindings cannot occur concurrently.

• The reason is that they need the same tokens.



Coloured Petri Nets   9

Resource allocation system
Two kinds of processes:

• Three cyclic q-processes (states A,B,C,D and E).

• Two cyclic p-processes (states B,C,D and E).

Three kinds of resources:

• Represented by the places R, S and T.

During a cycle a process reserves some resources
and releases them again:

• Tokens are removed from and added to the
resource places R, S and T.

A cycle counter is increased each time a process
completes a full cycle.

It is rather straightforward to prove that the
resource allocation system cannot deadlock.

• What happens if we add an additional token to
place S – i.e., if we start with four S-resources
instead of three?



Coloured Petri Nets   10

Coloured Petri Nets
Declarations:

• Types, functions, operations and variables.

Each place has the following inscriptions:

• Name (for identification).

• Colour set (specifying the type of tokens which
may reside on the place).

• Initial marking (multi-set of token colours).

Each transition has the following inscriptions:

• Name (for identification).

• Guard (boolean expression containing some of
the variables).

Each arc has the following inscriptions:

• Arc expression (containing some of the variables).
When the arc expression is evaluated it yields a
multi-set of token colours.



Coloured Petri Nets   11

Enabling and occurrence
A binding assigns a colour (i.e., a value) to each
variable of a transition.

A binding element is a pair (t,b) where t is a
transition while b is a binding for the variables
of t. Example: (T2,<x=p, i=2>).

A binding element is enabled if and only if:

• There are enough tokens (of the correct colours on
each input-place).

• The guard evaluates to true.

When a binding element is enabled it may occur:

• A multi-set of tokens is removed from each
input-place.

• A multi-set of tokens is added to each
output-place.

A binding element may occur concurrently to other
binding elements – iff there are so many tokens
that each binding element can get its "own share".



Coloured Petri Nets   12

Main characteristics of CP-nets
Combination of text and graphics.

Declarations and net inscriptions are specified by
means of a formal language, e.g., a programming
language.

• Types, functions, operations, variables and
expressions.

Net structure consists of places, transitions and
arcs (forming a bi-partite graph).

• To make a CP-net readable it is important to
make a nice graphical layout.

• The graphical layout has no formal meaning.

CP-nets have the same kind of concurrency
properties as Place/Transition Nets.



Coloured Petri Nets   13

Formal definition of CP-nets

Definition:  A Coloured Petri Net is a tuple CPN = (Σ, P, T, A, N,
C, G, E, I)  satisfying the following requirements:

(i) Σ is a finite set of non-empty types, called colour sets.

(ii) P is a finite set of places.

(iii) T is a finite set of transitions.

(iv) A is a finite set of arcs such that:

• P ∩  T = P ∩ A = T ∩  A = Ø.

(v) N is a node function. It is defined from A into P × T ∪  T × P.

(vi) C is a colour function. It is defined from P into Σ.

(vii) G is a guard function. It is defined from T into expressions
such that:
• ∀ t ∈ T: [Type(G(t)) = Bool  ∧   Type(Var(G(t))) ⊆  Σ].

(viii) E is an arc expression function. It is defined from A into
expressions such that:
• ∀ a ∈ A: [Type(E(a)) = C(p(a))MS ∧  Type(Var(E(a))) ⊆  Σ]
where p(a) is the place of N(a).

(ix) I is an initialization function. It is defined from P into
closed expressions such that:
• ∀ p ∈ P: [Type(I(p)) = C(p)MS].



Coloured Petri Nets   14

Formal definition of behaviour

Definition:  A step is a multi-set of binding elements.

A step Y is enabled in a marking M iff the following property is
satisfied:

∀ p ∈ P: ∑
(t,b) ∈ Y

  E(p,t)<b>  ≤  M(p).

When a step Y is enabled in a marking M1 it may occur, changing
the marking M1 to another marking M2, defined by:

∀ p ∈ P:  M2(p) = (M1(p) – ∑
(t,b) ∈ Y

  E(p,t)<b>) + ∑
(t,b) ∈ Y

  E(t,p)<b>.

The first sum is called the removed tokens while the second is
called the added tokens. Moreover we say that M2 is directly
reachable from M1 by the occurrence of the step Y, which we also
denote: M1 [Y› M2.

An occurrence sequence is a sequence of markings and steps:

M1 [Y1› M2 [Y2› M3 … Mn [Yn› Mn+1

such that  Mi [Yi› Mi+1  for all i ∈ 1. .  n. We then say that Mn+1 is
reachable from M1. We use [M› to denote the set of markings
which are reachable from M.



Coloured Petri Nets   15

Formal definition
The existence of a formal definition is very
important:

• It is the basis for simulation, i.e., execution of the
CP-net.

• It is also the basis for the formal verification
methods (e.g., state spaces and place invariants).

• Without the formal definition, it would have
been impossible to obtain a sound net class.

It is not necessary for a user to know the formal
definition of CP-nets:

• The correct syntax is checked by the CPN editor,
i.e., the computer tool by which CP-nets are
constructed.

• The correct use of the semantics (i.e., the
enabling rule and the occurrence rule) is
guaranteed by the CPN simulator and the
CPN tools for formal verification.



Coloured Petri Nets   16

High-level contra low-level nets
The relationship between CP-nets and
Place/Transition Nets (PT-nets) is analogous to
the relationship between high-level programming
languages and assembly code.

• In theory, the two levels have exactly the same
computational power.

• In practice, high-level languages have much
more modelling power – because they have better
structuring facilities, e.g., types and modules.

Each CP-net has an equivalent PT-net – and vice
versa.

• This equivalence is used to derive the definition
of basic properties and to establish the
verification methods.

• In practice, we never translate a CP-net into a
PT-net – or vice versa.

• Description, simulation and verification are done
directly in terms of CP-nets.



Coloured Petri Nets   17

Other kinds of high-level nets
CP-nets have been developed from
Predicate/Transition Nets.

• Hartmann Genrich & Kurt Lautenbach.

• With respect to description and simulation the
two models are nearly identical.

• With respect to formal verification there are
some differences.

Several other kinds of high-level Petri Nets exist.

• They all build upon the same basic ideas, but use
different languages for declarations and
inscriptions.

• A detailed comparison is outside the scope of
this talk.



Coloured Petri Nets   18

Simple protocol

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA

1`(1,"Modellin")+
1`(2,"g and An")+
1`(3,"alysis b")+
1`(4,"y Means ")+
1`(5,"of Colou")+
1`(6,"red Petr")+
1`(7,"i Nets##")+
1`(8,"########")

NextSend
INT

1

D
INT

A

INTxDATA

Received
DATA

""

NextRec
INT

1

B

INTxDATA

C
INT

RP
8

Int_0_10

RA
Int_0_10

8

Sender Network Receiver

type INT = int;
type BOOL = bool;
type DATA = string; 
type INTxDATA = product INT * DATA;
var n, k : INT;
var p,str : DATA;
val stop = "########";

type Int_0_10 = int with 0..10;
type Int_1_10 = int with 1..10;
var s : Int_0_10;
var r : Int_1_10;

fun Ok(s : Int_0_10, r : Int_1_10) = (r≤s);

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

str

s

s
n



Coloured Petri Nets   19

Send packet

Send

INTxDATA
8

1`(1,"Modellin")
+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets##")
+ 1`(8,"########")

Send
Packet A

INTxDATA

NextSend
INT

1

1 1`1

(n,p)

(n,p)

n

Only the binding <n=1, p= "Modellin"> is enabled.

• When the binding occurs it adds a token to
place A. The token represents that the packet
(1,"Modellin") is sent to the network.

• The packet is not removed from place Send and
the NextSend counter is not changed.



Coloured Petri Nets   20

Transmit packet

A

INTxDATA

1 1`(1,"Modellin")

Transmit
Packet

RP
8

Int_0_10
1 1`8

B

INTxDATA
(n,p)

if Ok(s,r)
then 1`(n,p)
else empty

s

There are now 10 enabled bindings:

• They are all of the form
<n=1, p= "Modellin", s=8, r=…>.

• The variable r can take 10 different values,
because the type of r is defined to contain the
integers 1. .10.

The function Ok(s,r) checks whether r ≤ s.

• For r ∈ 1. .8, Ok(s,r) = true. This means that the
token is moved from A to B, i.e., that the packet is
successfully transmitted over the network.

• For r ∈ 9. .10, Ok(s,r) = false. This means that no
token is added to B, i.e., that the packet is lost.

• The CPN simulator make random choices
between enabled bindings. Hence there is 80%
chance for successful transfer.



Coloured Petri Nets   21

Receive packet

B

INTxDATA

1 1`(1,"Modellin")

Receive
Packet

NextRec
INT

1

1 1`1

Received
DATA

""
1 1`""

C
INT

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

k

if n=k
then k+1
else k

str

It is checked whether the number of the incoming
packet n matches the number of the expected
packet k.



Coloured Petri Nets   22

Correct packet number

B

1 1`(3,"alysis b")

Receive
Packet

NextRec

1 1`3

Received 1 1`"Modelling and An"

C

(n,p)
1

1`(3,"alysis b")

if n=k
andalso
p<>stop
then str^p
else str

1
1`"Modelling and Analysis b"

if n=k
then k+1
else k

1
1`4

k

1
1`3

if n=k
then k+1
else k

1
1`4

str

1
1`"Modelling and An"

• The data in the packet is concatenated to the data
already received.

• The NextRec counter is increased by one.

• An acknowledgement message is sent. It contains
the number of the next packet which the receiver
wants to get.



Coloured Petri Nets   23

Wrong packet number

B

1 1`(2,"g and An")

Receive
Packet

NextRec
1

1 1`3

Received 1 1`"Modelling and An"

C

(n,p)
1

1`(2,"g and An")

if n=k
andalso
p<>stop
then str^p
else str

1
1`"Modelling and An"

if n=k
then k+1
else k

1
1`3

k

1
1`3

if n=k
then k+1
else k

1
1`3

str

1
1`"Modelling and An"

• The data in the packet is ignored.

• The NextRec counter is unchanged.

• An acknowledgement message is sent. It contains
the number of the next packet which the receiver
wants to get.



Coloured Petri Nets   24

Transmit acknowledgement

C
INT

1 1`2

Transmit
Acknow.D

INT

RA
Int_0_10

8
1 1`8

nif Ok(s,r)
then 1`n
else empty

s

This transition works in a similar way as
Transmit Packet.

• The token on place RA determines the success
rate for transmission of acknowledgements.

• When RA contains a token with value 8, the
success rate is 80%.

• When RA contains a token with value 10, no
acknowledgements are lost.

• When RA contains a token with value 0, all
acknowledgements are lost.



Coloured Petri Nets   25

Receive acknowledgement

Receive
Acknow.

NextSend
INT

1

1 1`1

D
INT

1 1`2

n

k n

When an acknowledgement arrives to the Sender it
is used to update the NextSend counter.

• In this case the counter value becomes 2, and
hence the Sender will begin to send packet
number 2.



Coloured Petri Nets   26

Intermediate state

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA

8

1`(1,"Modellin")
+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets##")
+ 1`(8,"########")

NextSend
INT

1

1 1`5

D
INT

1 1`6

A

INTxDATA

Received
DATA

""
1 1`"Modelling and 

Analysis by Means 
of Colou"

NextRec
INT

1

1 1`6

B

INTxDATA

1 1`(5,"of Colou")

C
INT

1 1`6

Sender Network Receiver

RP
8

Int_0_10
1 1`8

RA
Int_0_10

8
1 1`8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

• The Receiver is expecting package no. 6. This
means that it has successfully received the first 5
packets.

• The Sender is still sending packet no. 5. In a
moment it will receive an acknowledgement
containing a request for packet no. 6.

• When the acknowledgement is received the
NextSend counter is updated and the Sender will
start sending packet no. 6.



Coloured Petri Nets   27

Final state

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA

8

1`(1,"Modellin")
+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets##")
+ 1`(8,"########")

NextSend
INT

1

1 1`9

D
INT

A

INTxDATA

Received
DATA

""
1 1`"Modelling and 

Analysis by Means 
of Coloured Petri 
Nets##"

NextRec
INT

1

1 1`9

B

INTxDATA

C
INT

Sender Network Receiver

RP
8

Int_0_10
1 1`8

RA
Int_0_10

8
1 1`8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

• When the last packet, i.e., packet no. 8 reaches
the Receiver an acknowledgement with value 9 is
sent.

• When this acknowledgement reaches the Sender
the NextSend counter is updated to 9.

• This means that the Send Packet transition no
longer can occur, and hence the transmission
stops.



Coloured Petri Nets   28

Part 2: Hierarchical CP-nets
A hierarchical CP-net contains a number of
interrelated subnets– called pages.

D

INTxINT

A

INTxDATA

Received
DATA

""

B

INTxDATA

C
INT

Sender

HS

Sender

Network

HS

Network

Receiver

HS

Receiver

 Simple Protocol

Send
Packet

NextSend
INT

1

Receive
Acknow.

Send

INTxDATA

D
INTxINT

A

INTxDATA

Transmit
Packet

RP
8

Int_0_10

RA
Int_0_10

8

Transmit
Acknow.D

INTxINT

C
INT

A

INTxDATA

B

INTxDATA

NextRec
INT

1
Receive
Packet

C
INT

Received
DATA

""

B

INTxDATA

 Sender  Receiver Network

Out

Out

Out

In

In

InOut

In

I/O

(n,p)

k min(n1,n2)

n

(n,p)

1`(n1,1)+
1`(n2,2)

s

s

(n,p)

n

if Ok(s,r)
then 1`n
else empty

if Ok(s,r)
then 1`(n,p)
else empty

k

if n=k
then k+1
else k

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

str



Coloured Petri Nets   29

Substitution transitions
A page may contain one ore more substitution
transitions.

• Each substitution transition is related to a page,
i.e., a subnet providing a more detailed
description than the transition itself.

• The page is a subpage of the substitution
transition.

There is a well-defined interface between a
substitution transition and its subpage:

• The places surrounding the substitution transition
are socket places.

• The subpage contains a number of port places.

• Socket places are related to port places – in a
similar way as actual parameters are related to
formal parameters in a procedure call.

• A socket place has always the same marking as
the related port place. The two places are just
different views of the same place.

Substitution transitions work in a similar way as
the refinement primitives found in many system
description languages – e.g., SADT diagrams.



Coloured Petri Nets   30

Pages can be used more than once

D

INTxINT

A

INTxDATA

Received
DATA

""

B1

INTxDATA

C1
INT

Sender

HS

Sender

Network

HS

Network

RecNo1

HS

Receiver
B1->B
C1->C

B2

INTxDATA

C2
INT

RecNo2

HS

Receiver
B2->B
C2->C

Received
DATA

""

 Simple Protocol with 2 Receivers

Send
Packet

NextSend
INT

1

Receive
Acknow.

Send

INTxDATA

D
INTxINT

A

INTxDATA

Transmit
Packet

RP
8

Int_0_10

RA1
Int_0_10

8

Transmit
Acknow.

D
INTxINT

C1
INT

B2

INTxDATA
A

INTxDATA

B1

INTxDATA

RA2
Int_0_10

8

Transmit
Acknow. C2

INT

NextRec
INT

1
Receive
Packet

C
INT

Received
DATA

""

B

INTxDATA

 Sender  Receiver Network

Out

Out

Out

Out

In

In

In

Out

In

In

I/O

(n,p)

k min(n1,n2)

n

(n,p)

1`(n1,1)+
1`(n2,2)

s

s

(n,p)

if Ok(s,r2)
then 1`(n,p)
else empty

n
if Ok(s,r)
then 1`(n,1)
else empty

if Ok(s,r1)
then 1`(n,p)
else empty

s

nif Ok(s,r)
then 1`(n,2)
else empty

k

if n=k
then k+1
else k

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

str

There are two different instances of the Receiver
page. Each instance has its own marking.



Coloured Petri Nets   31

Ring network

4to1PACK

1to2

PACK

Site1

HS

Site
4to1->Incoming
1to2->Outgoing

2to3 PACK

Site2

HS

Site
1to2->Incoming
2to3->Outgoing

3to4

PACK

Site3
HS

Site
2to3->Incoming
3to4->Outgoing

Site4
HS

Site
3to4->Incoming
4to1->Outgoing

 Ring Network

NewPack

PackNo

INT 1

Package
PACK

Send

Outgoing
PACK

Out

Incoming
PACK

In

Receive

 Site

Received

PACK

n+1n

{se=this(), re=r, no=n}

p

if #re p <> this()
then 1`p
else empty

p

if #re p <> this()
then 1`p
else empty

if #re p = this()
then 1`p
else empty

if #re p = this()
then 1`p
else empty



Coloured Petri Nets   32

Formal definition of hierarchical
CP-nets
The syntax and semantics of hierarchical CP-nets
have formal definitions – similar to the definitions
for non-hierarchical CP-nets

Each hierarchical CP-net has an equivalent
non-hierarchical CP-net – and vice versa.

• The two kinds of nets have the same
computational power – but hierarchical CP-nets
have much more modelling power.

• The equivalence is used for theoretical purposes.

• In practice, we never translate a hierarchical
CP-net into a non-hierarchical CP-net – or vice
versa.



Coloured Petri Nets   33

CP-nets may be large
A typical industrial application of CP-nets
contains:

• 10-200 pages.

• 50-1000 places and transitions.

• 10-200 colour sets.

This corresponds to thousands/millions of nodes in
a Place/Transition Net.

Most of the industrial applications would be totally
impossible without:

• Colours.

• Hierarchies.

• Computer tools.



Coloured Petri Nets   34

Protocol for telephone network
Transport layer of a protocol for digital telephone
communication.

ISDN#1

USER_TOP#2

NULL#3

DECLARE#4

CALL_REC#11

CONNECT#12

INCOMING#13

HIERARCHY#10010

CALL_INI#6

OVERLAP#9

OUTGOING#15

CALL_DEL#16

NULL_SET#5

ACTIVE#7

DISCONNE#8

RELEASE#17

DISC_IND#18

NET_TOP#19

NULL#20 U_SETUP#21

N_SETUP#22ROUTING#24

OUTGOING#26

N_E_PART#27

CALL_DEL#28

OVERLAP#29

CONNECT#30

N_D_PART#31

CALL_REC#32

DISCONNE#33

DISCONNE#34

RELEASE#35

ACTIVE#36

INCOMING#37

CALL_PRE#38

UREQ_GEN#39

U_DISC#23

U_REL#25

U_REL_CO#40

U_PROG#41

U_INFO#42

N_HOLD#44

U_HOLD#45

{

Users

U1

U7

U8

U9

U0

U2

U3

U4

U10

U11

U19

U12

N0

N3

N4

N2

N8

N7

N11

N12

N19

N10

N9

N6

Networks

Overview of the hierarchy structure:

• Each node represents a page, i.e., a subnet.

• Each arc represents a transition substitution.



Coloured Petri Nets   35

Two of the most abstract pages

UserToNetwork

Message

NetworkToUser
Message

Users Networks

------------------------------------------------------------------------------------------------------------ 

NetworkToUser

Message

UserToNetwork

Message

IntUserReq

UIntReq

U1 U2 U3 U4 U7 U8 U9 U10 U11 U12 U19U0

UREQ
In

Out



Coloured Petri Nets   36

Typical page for the user site

(u,{mt=DISC,
cr=cref,
ai=null})

(u,{mt = REL_COM,
cr = cref,
 ai = null})

(u, {mt=STATUS,
cr=cref, 
ai=Status 8})

(u,m)

(u,m)

(u,cref,b,s) (u,cref,b,s) (u,cref,b,s) (u,0,none,s)

(u,{mt=CLEAR_REQ,
 ai=Callref cref})

U8

UserState

NetworkToUser

Message

In

[#mt m =
STATUS_ENQ,
cref= #cr m]

[#mt m =
REL_COM,
cref= #cr m]

[#mt m = DISC,
cref= #cr m]

[#mt m =
CONN_ACK,
cref= #cr m]

UserToNetwork

Message

Out

U11 U10 U12 U0

[#mt m = REL,
cref= #cr m]

CLEAR_REQ

InternalUserReq

UIntReq

In (u,cref,b,s)

This page describes the possible actions that can
happen when the user site is in state U8:

• From the network five different kinds of
messages may be received.

• In addition there is one kind of internal user
request.

• In three of the cases a new message is sent to the
network site.



Coloured Petri Nets   37

Typical transition

(u, {mt=STATUS,
cr=cref, 
ai=Status 8})

(u,m)

(u,cref,b,s)

NetworkToUser
Message

[#mt m =
STATUS_ENQ,
cref= #cr m]

UserToNetwork
Message

U8
UserState

type UserState = 
   product User
             * CallRef
             * BChanName
             * HoldStatus;

type MessageRec = 
    record  mt : MessageType
              * cr : CallReference
              * ai : MessageData;
type Message = 
    product User * MessageRec;

This transition describes the actions that are taken
when a Status Enquiry message is received in state
U8:

• The guard checks that the message is a Status
Enquiry message. It also checks that the Call
Reference is correct (i.e., matches the one in the
User State token at place U8).

• A Status message is sent to the network site. It
tells that the user site is in state U8.



Coloured Petri Nets   38

SDL description of user page

CONN
ACK

DISC REL
REL
COM

STATUS
ENQ

ANY
OTHER

MESSAGE

CLEAR
REQUEST

8 CONNECT
REQUEST

DISC

11

CONNECT
B-CHANNEL

TO USER

10

12
RELEASE

CRV

RELEASE
CRV

REL
COM

0

0

FORM CAUSE
CALL STATE
(U8 OR U10)

STATUS

8

OPTION

Each vertical string of SDL symbols describes a
sequence of actions – which is translated into a
single CPN transition.

• The translation from SDL to CPN was done
manually.

• The translation is straightforward and it could
easily be automated.

The graphical shape of a node has a well-defined
meaning in SDL.

• In the CP-net the shape is retained – to improve
the readability. It has no formal meaning.



Coloured Petri Nets   39

Typical page for the network site

N6

NetState

NetFromNet

NIntReq

UserToNetwork

Message

"E"
[#mt m =
 ALERT,
 cref= #cr m]

NetToNet

NIntReq

NetworkToUser

Message

"D"
FIRST

TIMEOUT 
T303

T303

NTimerCount

NBC
BChan

N0
NetState

N7
NetState

[#mt m = 
 CALL_PROC,
cref= #cr m]

[#mt m = 
 REL_COM,
 cref= #cr m]

T310

NTimer

N9
NetState

TimeOutEnab

SECOND
TIMEOUT 

T303

NBC

BChan

In

In

Out

Out

[count=
first]%
(n,{mt=
N_ALERT,
ai=nnull},
nnr)

(n,{mt=
N_PROG,
ai=nnull},

nnr)

(n,cref,first) 

(n,cref,count) 

(n,u,cref,
b,nnr) 

(n,no,0,
 none,0)

(n,u,cref,
 b,nnr)

(n,u,cref,b,nnr) 

(u,m)

(n,cref,count) 

(n,cref)

(u,m)

(n,b,
 0,free)

(u,{mt=
SETUP,
cr=cref,
ai=null})

(n,cref,second) 

(n,b,cref,
in_use)

(n,{mt=N_PROG,
ai=nnull},nnr)

e

(n,{mt=
N_PROG,
ai=nnull},

nnr)

(n,b,
 0,free)

(n,cref,second) 

(n,u,cref,b,nnr) 

(n,b,cref,
in_use)

Similar structure as for the user page – but slightly
more complex.



Coloured Petri Nets   40

SDL description of network page

CALL
PROC ALERT

REL
COMP

T303
EXPIRESD E

6 CALL
PRESENT

STOP
T303

START
T310

PT.
MULT.

RETAIN CAUSE
FROM FIRST
REL COMP

SEND PROG
WITH SIG = AUD.

RING AND
RETAINED CALLS TO 

CALLING USER

STOP
T303

RELEASE
B-CHANNEL

AND CRV

0
NULL

RECORD
INDICATED
TERMINAL

STOP
T303

FIRST
ALERT

SEND
CALLING

USER ALERT

7 CALL
RECEIVED

6 CALL
PRESENT

SEND PROG TO
CALLING USER
WITH CAUSE =

NO USER
RESPONDING

SEND PROG TO
CALLING USER

WITH SIG = AUD.
RING AND IN-BAND

AUDIBLE RING

9 INCOMING
CALL PROCEEDING

NO

YES

FIRST
TIMEOUT

RELEASE
B-CHANNEL

AND CRV
SETUP

START
T303

0
NULL

NO

NO

YES

YES

Similar structure as for the user page – but slightly
more complex.

It is easy to see that there is a very straightforward
relationship between the SDL page and the
corresponding CPN page.



Coloured Petri Nets   41

Some pages are used many times
ISDN#1

USER_TOP#2

NULL#3

DECLARE#4

CALL_REC#11

CONNECT#12

INCOMING#13

HIERARCHY#10010

CALL_INI#6

OVERLAP#9

OUTGOING#15

CALL_DEL#16

NULL_SET#5

ACTIVE#7

DISCONNE#8

RELEASE#17

DISC_IND#18

NET_TOP#19

NULL#20 U_SETUP#21

N_SETUP#22ROUTING#24

OUTGOING#26

N_E_PART#27

CALL_DEL#28

OVERLAP#29

CONNECT#30

N_D_PART#31

CALL_REC#32

DISCONNE#33

DISCONNE#34

RELEASE#35

ACTIVE#36

INCOMING#37

CALL_PRE#38

UREQ_GEN#39

U_DISC#23

U_REL#25

U_REL_CO#40

U_PROG#41

U_INFO#42

N_HOLD#44

U_HOLD#45

{

Users

U1

U7

U8

U9

U0

U2

U3

U4

U10

U11

U19

U12

N0

N3

N4

N2

N8

N7

N11

N12

N19

N10

N9

N6

Networks

• 43 pages with more than 100 page instances.

• The entire modelling of this – fairly complex
protocol – was made in only 3 weeks (by a single
person).

• According to engineers at the participating
telecommunications company, the CPN model
was the most detailed behavioural model that
they had ever seen for such protocols.



Coloured Petri Nets   42

Practical use of CP-nets
CP-nets are used in many different areas. A few
selected examples are:

• Communication protocols (BRI, DQDB, ATM).

• VLSI chips (clocked and self-timed).

• Banking procedures (check processing and funds
transfer).

• Correctness of ADA programs (rendezvous
structure).

• Teleshopping systems.

• Military systems (radar control post and naval
vessel).

• Security systems (intrusion alarms, etc.).

• Flexible manufacturing.



Coloured Petri Nets   43

Summary of practical experiences
Graphical representation and executability are
extremely important.

Most practical models are large.

• They cannot be constructed without the
hierarchy concepts.

• Neither can they be constructed or verified
without the computer tools.

CP-nets are often used together with other
graphical description languages, such as SADT,
SDL and block diagrams.

• This means that the user does not have to learn a
completely new language.

CP-nets are well-suited for verification of existing
designs – in particular concurrent systems.

• CP-nets can also be used to design new systems.

• Then it is possible to use the insight gained
through the modelling, simulation and
verification activities – to improve the design
itself.



Coloured Petri Nets   44

Part 3: Construction and
Simulation of CP-nets

CP-nets have an integrated set of robust computer
tools with reliable support:

• Construction and modification of CPN models.

• Syntax checking (e.g., types and module
interfaces).

• Interactive simulation, e.g., to gain additional
understanding of the modelled system. Can also
be used for debugging.

• Automatic simulations, e.g., to obtain
performance measures. Can also be used for
prototyping.

• Verification to prove behavioural properties.

– State spaces (also called reachability graphs
and occurrence graphs).

– Place invariants.

The computer tools are available on different
platforms:

• Sun Sparc with Solaris.

• Macintosh with Mac OS.



Coloured Petri Nets   45

CPN editor

Each page is shown in its own window.

The user performs an operation by selecting an
object and a command for it, e.g.:

• Select a transition (by pointing with the mouse).

• Select the desired command (by pointing in the
corresponding drop-down menu).

Commands can be performed on a set of objects.



Coloured Petri Nets   46

Editor knows syntax of CP-nets
Some kinds of errors are impossible, e.g.:

• An arc between two places or two transitions.

• A place with two colour sets or an arc with two
arc expressions.

• A transition with a colour set.

• Port assignment involving a place which is a
non-socket or a non-port.

• A cyclic set of substitution transitions.

The editor behaves intelligently:

A
U

B
U

Trans[x<>y]

A
U

B
U

Trans[x<>y]

A
U

B
U

Trans
[x<>y]

A
U

B
U

(x,y)

f(x,y)

(x,y)

f(x,y)

(x,y)

f(x,y)

• When a node is repositioned or resized the
surrounding arcs and inscriptions are
automatically adjusted.

• When a node is deleted the surrounding arcs are
automatically deleted.



Coloured Petri Nets   47

Attributes
Each graphical object has its own attributes.

They determine how the object appears on the
screen/print-outs:

Transition

Transition

Transition

• Text attributes

• Graphical attributes

• Shape attributes

Each kind of objects has its own defaults:

Place Name
Colour Set

Initial Marking

Transition
Name [Guard]

Arc Expression

Defaults can be changed and they can be
overwritten (for individual objects).



Coloured Petri Nets   48

Easy to experiment

[not(locked(r))]

C

Get Record Lock

@+CPUlock()

TRANS
P7Out

TRANS_REQ
P1In

LOCK_DB

Lock Table

FG

TRANS_REQ

P2

[i>1]Reserve Page

C

@+CPUreserve()

APP_REQ
P4

APP_REQ
P6

Read Data
From Buffer

@+CPUread()

C

[buffered(r)]

Bypass Disk Access

C

@+CPUbypass()

Record Read

HS DiskAccess

APP_REQ
P5

C
@+CPUupdate()

Update Buffer

BUFFER_DB

Buffer Table

FG

TRANS_REQ_QUEUE

( [ ] , [ ] )
P3

[need_disk_read(r), 
page_clean_proc()]

Queue Request

C

In Line Cleaning

HS

PageCleaning

(t,r)

(t,r)

ldb

(TAPP t,dr)

(TAPP t,
DiskReqOfRec(r))

(t,r)

(TAPP t,
DiskReqOfRec(r))

t

i

(ap,dr)

(ap,dr)

i

tq

((t,r)::trl1,trl2)

(t,r)

tq

(trl1,trl2)

i

i

i

i -1

Can we improve the layout of this page?



Coloured Petri Nets   49

Improved layout

[not(locked(r))]

C

Get Record Lock

@+CPUlock()

TRANS
P7Out

TRANS_REQ
P1In

LOCK_DB

Lock Table

FG

TRANS_REQ
P2

[i>1]Reserve Page

C @+CPUreserve()

APP_REQ
P4

APP_REQ
P6

Read Data
From Buffer @+CPUread()C

[buffered(r)]

Bypass Disk Access

C

@+CPUbypass()

Record Read

HS DiskAccess

APP_REQ
P5

C @+CPUupdate()
Update Buffer

BUFFER_DB

Buffer Table

FG

TRANS_REQ_QUEUE

( [ ] , [ ] )
P3

[need_disk_read(r), 
page_clean_proc()]

Queue Request

C

In Line Cleaning

HS

PageCleaning

(t,r)

(t,r)

ldb

(TAPP t,dr)

(TAPP t,
DiskReqOfRec(r))

(t,r)

(TAPP t,
DiskReqOfRec(r))

t

i

(ap,dr)

(ap,dr)

i

tq

((t,r)::trl1,trl2)

(t,r)

tq

(trl1,trl2)

i

i

i

i -1



Coloured Petri Nets   50

How to make a new subpage

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive
DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive
E

e

DataBase#1

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

We want to move the four selected nodes to a new
page – and replace them by a substitution
transition:

• This is done by a single command – called Move
to Subpage.



Coloured Petri Nets   51

Result of Move to Subpage

Receive all
Acknowledg-

ments

Update
and

Send Messages

Inactive
DBM

DBM
Waiting

DBM

Unused

MES

MES

Sent

MES

Acknowledged

MES

Active

E

Passive
E

e

HS New#2

DataBase#1

Receive
a

Message

Received
MES

Send an
Acknowledg-

ment

Performing

DBM

Inactive
DBM

DBM

I/O

Acknowledged

MES

Out

Sent

MES

In

New#2

Mes(s)

(s,r)

(s,r)

Mes(s)

Mes(s)

Mes(s)

ss

s s

r

r

e

e e

e

(s,r)

(s,r)

r

r

(s,r)

(s,r)

r

r



Coloured Petri Nets   52

Move to Subpage is complex
The Move to Subpage command is complex. The
command:

• Checks the legality of the selection (all border
nodes must be transitions).

• Creates the new page.

• Moves the subnet to the new page.

• Prompts the user to create a new transition which
becomes the supernode for the new subpage.

• Creates the port places by copying those places
which were next to the selected subnet.

• Calculates the port types (in, out or in/out).

• Creates the corresponding port inscriptions.

• Constructs the necessary arcs between the port
nodes and the selected subnet.

• Draws the arcs surrounding the new transition.

• Creates a hierarchy inscription for the new
transition.

• Updates the hierarchy page.

All these things are done in a few seconds.



Coloured Petri Nets   53

Top-down and bottom-up
Move to Subpage supports top-down development.
However, it is also possible to work bottom-up – or
use a mixture of top-down and bottom-up.

The Substitution Transition command is used to
relate a substitution transition to an existing page.
The command:

• Makes the hierarchy page active.

• Prompts the user to select the desired subpage;
when the mouse is moved over a page node it
blinks, unless it is illegal (because selecting it
would make the page hierarchy cyclic).

• Waits until a blinking page node has been
selected.

• Tries to deduce the port assignment by means of
a set of rules which looks at the port/socket
names and the port/socket types.

• Creates the hierarchy inscription with the name
and number of the subpage and with those parts
of the port assignment which could be
automatically deduced.

• Updates the hierarchy page.



Coloured Petri Nets   54

Syntax checking
When a CPN diagram has been constructed it can
be syntax checked.

The most common errors are:

• Syntax errors in the declarations.

• Syntax errors in arc expressions or guards.

• Type mismatch between arc expressions and
colour sets.

Syntax checking is incremental:

• When a colour set, guard or an arc expression is
changed, it is sufficient to recheck the nearest
surroundings.

• Analogously, if an arc is added or removed.

All CPN diagrams in this set of lecture notes are
made by means of the CPN editor.



Coloured Petri Nets   55

CPN simulator
When a syntactical correct CPN diagram has been
constructed, the CPN tool generates the necessary
code to perform simulations.

The simulation code:

• Calculates whether the individual transitions and
bindings are enabled.

• Calculates the effect of occurring transitions and
bindings.

The code generation is incremental. Hence it is fast
to make small changes to the CPN diagram.

We distinguish between two kinds of simulations:

• In an interactive simulation the user is in control,
but most of the work is done by the system.

• In an automatic simulation the system does all
the work.



Coloured Petri Nets   56

Interactive simulation

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA

8

1`(1,"Modellin")
+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets##")
+ 1`(8,"########")

NextSend
INT

1

1 1`5

D
INT

1 1`6

A

INTxDATA

Received
DATA

""
1 1`"Modelling and 

Analysis by Means 
of Colou"

NextRec
INT

1

1 1`6

B

INTxDATA

1 1`(5,"of Colou")

C
INT

1 1`6

Sender Network Receiver

RP
8

Int_0_10
1 1`8

RA
Int_0_10

8
1 1`8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

Simulation results are shown directly on the CP-net:

• The user can see the enabled transitions and the
markings of the individual places.

To execute a step, the user:

• Selects one of the enabled transitions.

• Then he either enters a binding or asks the
simulator to calculate all the enabled bindings, so
that he can select one.



Coloured Petri Nets   57

Execution of a step
The simulator:

• Checks the legality and enabling of the binding.

• Calculates the result of the execution.

The user determines whether the simulator
displays the tokens which are added/removed:

B

1 1`(3,"alysis b")

Receive
Packet

NextRec

1 1`3

Received 1 1`"Modelling and An"

C

(n,p)
1

1`(3,"alysis b")

if n=k
andalso
p<>stop
then str^p
else str

1
1`"Modelling and Analysis b"

if n=k
then k+1
else k

1
1`4

k

1
1`3

if n=k
then k+1
else k

1
1`4

str

1
1`"Modelling and An"



Coloured Petri Nets   58

Interactive simulation with
random selection of steps
The simulator chooses between conflicting
transitions and bindings (by means of a random
number generator).

• The user can observe all details, e.g., the markings
the enabling and the added/removed tokens.

• The simulator shows the page on which each step
is executed – by moving the corresponding
window to the top of the screen.

• The user can set breakpoints so that he has the
necessary time to inspect markings, enablings,
etc.

A simulation with this amount of graphical feedback
is slow (typically a few transitions per minute):

• It takes a lot of time to update the graphics.

• A user has no chance to follow a fast simulation.

It is possible to turn off selected parts of the
graphical feedback, e.g.:

• Added and removed tokens.

• Observation of uninteresting pages.



Coloured Petri Nets   59

Automatic simulation
The simulator chooses between conflicting
transitions and bindings (by means of a random
number generator).

The user does not intend to follow the simulation:

• The simulation can be very fast – several
hundred steps per second.

• The user specifies some stop criteria, which
determine the duration of the simulation.

• When the simulation stops the graphics of the
CP-net is updated.

• Then the user can inspect all details of the
graphics, e.g., the enabling and the marking.

• Automatic simulations can be mixed with
interactive simulations.

To find out what happens during an automatic
simulation the user has a number of choices.



Coloured Petri Nets   60

Simulation report
1 SendPack@(1:Top#1) {n = 1, p = "Modellin"}
2 TranPack@(1:Top#1) {n = 1, p = "Modellin", r = 6, s = 8}
3 SendPack@(1:Top#1) {n = 1, p = "Modellin"}
4 TranPack@(1:Top#1) {n = 1, p = "Modellin", r = 3, s = 8}
5 RecPack@(1:Top#1) {k = 1, n = 1, p = "Modellin",

str = ""}
6 SendPack@(1:Top#1) {n = 1, p = "Modellin"}
7 SendPack@(1:Top#1) {n = 1, p = "Modellin"}
8 TranAck@(1:Top#1) {n = 2, r = 2, s = 8}
9 TranPack@(1:Top#1) {n = 1, p = "Modellin", r = 7, s = 8}
10 RecPack@(1:Top#1) {k = 2, n = 1, p = "Modellin",

str = "Modellin"}
11 RecAck@(1:Top#1) {k = 1, n = 2}
12 RecPack@(1:Top#1) {k = 2, n = 1, p = "Modellin",

str = "Modellin"}
13 TranAck@(1:Top#1) {n = 2, r = 7, s = 8}
14 TranPack@(1:Top#1) {n = 1, p = "Modellin", r = 6, s = 8}
15 RecAck@(1:Top#1) {k = 2, n = 2}
16 SendPack@(1:Top#1) {n = 2, p = "g and An"}
17 TranAck@(1:Top#1) {n = 2, r = 6, s = 8}
18 RecPack@(1:Top#1) {k = 2, n = 1, p = "Modellin",

str = "Modellin"}
19 RecAck@(1:Top#1) {k = 2, n = 2}
20 SendPack@(1:Top#1) {n = 2, p = "g and An"}

The simulation report shows the transitions which
have occurred. The user determines whether he
also wants to see the bindings.



Coloured Petri Nets   61

Charts

Packets Received

Step No.
0 20 40 60 80 100 120 140 160 180 200

Packet No

0

1
2
3
4
5
6
7
8
9
10

 Packetspack1

pack2

pack3

pack4

pack5

pack6

pack7

pack8

5

5

7

5

4

 

 

 

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

 Successes

 Failures

 Lost

 Enroute

These charts are used to show the progress of a
simulation of the simple protocol:

• The upper chart is updated each time a new
packet is successfully received.

• The lower chart is updated for each 50 steps.



Coloured Petri Nets   62

Other kinds of graphics

u(1)

Short

u(3)

Short

u(4)

Inac

u(6)

Ring

u(10)

NoTo

u(9)

Inac

u(8)

Conn

u(7)

Conn

u(5)

Short

u(2)

Long

This graphic is used to display the state of a simple
telephone system. The graphics is updated each
time one of the telephones changes to a new state:

• Telephones u(7) and u(8) are connected.

• Telephone u(2) is calling u(6) which is ringing.

• Telephone u(10) is calling u(2). This call will not
succeed because u(2) already is engaged.



Coloured Petri Nets   63

Code segments
Each transition may have a code segment, i.e., a
sequence of program instructions which are
executed each time the transition occurs.

NoTone
U

Long
U

Free C

input (x,y);
action
  UpdateState(x,Long);
  UpdateState(y,Ringing);
  UpdateConn(x,y,Call);

Ringing
U

Request
UxU

Call
UxU

Engaged
U

Inactive
U

x

x

y

(x,y)

(x,y)

y

y

• The instructions in code segment are used to
update charts and graphics.

• This is done by calling a number of library
functions.

• Usually, the code segment does not influence the
behaviour of the CP-net (i.e., the enabling and
occurrence).

• However, a code segment may read and write
from files.

• In this way it is possible to input values to be
used during the simulation, or to output
simulation results.



Coloured Petri Nets   64

Standard ML
Declarations, net inscriptions and code segments
are specified in a programming language called
Standard ML.

• Strongly typed, functional language.

• Data types can be:
– Atomic (integers, reals, strings, booleans and

enumerations).
– Structured (products, records, unions, lists and

subsets).

• Arbitrary complex functions and operations can
be defined (polymorphism and overloading).

• Computational power of expressions are
equivalent to lambda calculus (and hence to
Turing machines).

• Developed at Edinburgh University by Robin
Milner and his group.

• Standard ML is well-known, well-tested and very
general. Several text books are available.



Coloured Petri Nets   65

Time analysis
CP-nets can be extended with a time concept.
This means that the same language can be used to
investigate:

• Logical correctness.
Desired functionality, absence of deadlocks, etc.

• Performance.
Remove bottlenecks. Predict mean waiting times
and average throughput. Compare different
strategies.

In a timed CP-net each token carries a colour (data
value) and a time stamp (telling when it can be
used).

Time stamps are specified by expressions:

• Time stamps can depend upon colour values.

• Time stamps can be specified by probability
distributions.

• This means that we, e.g., can specify fixed
delays, interval delays and exponential delays.



Coloured Petri Nets   66

A timed CP-net for protocol

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Acknow.

@+7

Transmit
Acknow.

@+Delay()

Send

INTxDATA

NextSend
INT

1

D
INT

A

INTxDATA

Received
DATA

""

NextRec
INT

1

B

INTxDATA

C
INT

Sender Network Receiver

RP
8

Int_0_10

RA
Int_0_10

8

Wait

TIME

100
(n,p) (n,p)

if OK(s,r)
then 1`(n,p)
else empty (n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else kn

k

if n=k
then k+1
else k

if OK(s,r)
then 1`n
else empty

n

k n

n

str

(n,p) (n,p)@+wait

s

s

wait

• For the three Send and Receive operations we
specify a fixed delay.

• For the network we specify an interval delay, i.e.,
random delay between 25 and 75 time units.

• The token colour on place Wait specifies the
delay between two retransmissions of the same
packet.

The computer tools for CP-nets also support
simulation of timed CP-nets.



Coloured Petri Nets   67

Timed simulation of protocol
Time: 570

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Acknow.

@+7

Transmit
Acknow.

@+Delay()

Send

INTxDATA

8 1`(1,"Modellin")@[218]+ 
1`(2,"g and An")@[670]+ 
1`(3,"alysis b")@[0]+ 1`(4,"y 
Means ")@[0]+ 1`(5,"of 
Colou")@[0]+ 1`(6,"red 
Petr")@[0]+ 1`(7,"i 
Nets##")@[0]+ 
1`(8,"########")@[0]

NextSend
INT

1

1 1`2@[570]

D
INT

1 1`3@[593]

A

INTxDATA

1

1`(2,"g and 
An")@[570]

Received
DATA

1 1`"Modelling and An"

""

NextRec
INT

1

1 1`3@[548]

B

INTxDATA

C
INT

Sender Network Receiver

RP
8

Int_0_10 1 1`8

RA
Int_0_10

1 1`88

Wait
TIME

1 1`100
(n,p) (n,p)

if OK(s,r)
then 1`(n,p)
else empty (n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else kn

k

if n=k
then k+1
else k

if OK(s,r)
then 1`n
else empty

n

k n

n

str

(n,p) (n,p)@+wait

s

s

wait

• Model time is now 570.

• Send Packet has sent a copy of packet no. 2 at
time 570.

• If no acknowledgement arrives another copy of
packet no. 2 will be sent at time 670.

• The only transition which is enabled at time 570
is Transmit Packet.



Coloured Petri Nets   68

Timed simulations
Timed simulations have the same facilities as
untimed simulations, e.g.:

• We can switch between interactive and
automatic simulation.

• Simulation reports tell the time at which the
individual transitions occurred.

• We can use charts and other kinds of reporting
facilities.

It is easy to switch between a timed and an untimed
simulation.



Coloured Petri Nets   69

Charts for a timed simulation

Time

Time
0 500 1000 1500 2000 2500 3000 3500 4000

Run No.

 

1

2

3

4

5

6

7

8

9

 

Step

Step
0 20 40 60 80 100 120 140 160

Run No.

 

1

2

3

4

5

6

7

8

9

 

25 : 1080

100 : 1576

200 : 2014

25 : 119

100 : 78

200 : 53

• Short interval between retransmisions implies
fast transmission with heavy use of the network.

• Long interval between retransmisions implies
slow transmission with less use of the network.

• To get reliable results it is necessary to make a
large number of lengthy simulation runs.



Coloured Petri Nets   70

Part 4: Verification of CP-nets
In this part of the talk we describe the two most
important methods for verification of CP-nets:

• State spaces (also called reachability graphs and
occurrence graphs).

• Place invariants.

We also describe how the verification methods are
supported by computer tools.



Coloured Petri Nets   71

State space analysis

AU

3`q

BU

2`p

CU

D	U

EU

T1

T2

T3

T4

T5

R

E

1`e

color U = with p | q; 
color E = with e;
var x : U;

S

E

3`e

T

E

2`e

x

x

x

x

x

x

x

x

x

if x=q
then 1`q
else empty

e

if x=q then 1`e
else empty

case x of
  p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
  p => 2`e
| q => 1`e

if x=p
then 1`p
else empty

To obtain a finite state space we remove the cycle
counters. Otherwise there would be an infinite
number of reachable markings.



Coloured Petri Nets   72

State space for resource allocation

 0
 2
 2

QQ
PPQ

–
–
–

#5

 1
 3
 2

QQQ
PP
–
–
–

#1

 1
 1
 2

QQQ
P
P
–
–

#2

 0
 1
 2

QQ
PP
Q
–
–

#9

 1
 1
 2

QQ
PP
–
Q
–

#10

 1
 1
 1

QQ
PP
–
–
Q#12

 1
 1
 1

QQQ
P
–
P
–

#3

 1
 1
 0

QQQ
P
–
–
P

#4

 0
 0
 2

QQ
PQ
P
–
–

#6

 0
 0
 1

QQ
PQ
–
P
–

#7

 0
 0
 0

QQ
PQ
–
–
P

#8

 0
 0
 2

Q
PPQ

–
Q
–

#11

 0
 0
 1

Q
PPQ

–
–
Q

#13

(T1,Q)

(T2,P)

(T2,Q)

(T3,Q)

(T4,Q)

(T5,Q)

(T3,P)

(T4,P)

(T1,Q)

(T2,P)

(T3,P)

(T5,P)

(T1,Q)

(T1,Q)

(T4,P)

(T5,P)

(T1,Q) (T4,Q)

(T1,Q)

(T5,Q)

Directed graph with:

• A node for each reachable marking (i.e., state).

• An arc for each occurring binding element.



Coloured Petri Nets   73

Some questions that can be
answered from state spaces
Boundedness properties:

• What is the maximal number of tokens on the
different places?

• What is the minimal number of tokens on the
different places?

• What are the possible token colours?

Home properties:

• Is it always possible to return to the initial
marking?

Liveness properties:

• Are all transitions live, i.e., can they always
become enabled again?



Coloured Petri Nets   74

State space report for resource
allocation system
Statistics
Occurrence Graph

Nodes: 13
Arcs: 20
Secs: 1
Status: Full

Scc Graph
Nodes: 1
Arcs: 0
Secs: 1

Boundedness Properties
Upper Integer Bounds

A: 3
B: 3
C: 1
D: 1
E: 1
R: 1
S: 3
T: 2

Upper Multi-set Bounds
A: 3`q
B: 2`p+ 1`q
C: 1`p+ 1`q
D: 1`p+ 1`q
E: 1`p+ 1`q
R: 1`e
S: 3`e
T: 2`e

Lower Integer Bounds
A: 1
B: 1
C: 0
D: 0
E: 0
R: 0
S: 0
T: 0

Lower Multi-set Bounds
A: 1`q
B: 1`p
C: empty
D: empty
E: empty
R: empty
S: empty
T: empty



Coloured Petri Nets   75

State space report (continued)
Home Properties

Home Markings: All

Liveness Properties

Dead Markings: None

Live Transitions: All

Fairness Properties

T1: No Fairness
T2: Impartial
T3: Impartial
T4: Impartial
T5: Impartial

Generation of the state space report takes only a
few seconds.

• The report contains a lot of useful information
about the behaviour of the CP-net.

• The report is excellent for locating errors or to
increase our confidence in the correctness of the
system.



Coloured Petri Nets   76

Strongly connected components

• Subgraph where all nodes are reachable from
each other.

• Maximal subgraph with this property.



Coloured Petri Nets   77

Strongly connected components
are very useful
There are often much fewer strongly connected
components than nodes:

• A cyclic system has only one strongly connected
component.

• This is, e.g., the case for the resource allocation
system.

• The strongly connected components can be
determined in linear time, e.g., by Tarjan’s
algorithm.

Strongly connected components can be used to
answer questions about home properties and
liveness properties.



Coloured Petri Nets   78

State space for simple protocol

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA 1`(1,"Coloured")+
1`(2," Petri N")+
1`(3,"ets#####")+
1`(4,"########")

NextSend
INT

1

D
INT

A

INTxDATA

Received
DATA

""

NextRec
INT

1

B

INTxDATA

C
INT

Sender Network Receiver

RP
1

Int_0_2

RA
Int_0_2

1

Max 2 tokens

Max 1 token Max 2 tokens

Max 1 token

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s 

To obtain a finite state space we limit the number
of tokens on the “buffer” places A, B, C and D.
Otherwise there would be an infinite number of
reachable markings.

Moreover, we now only have 4 packets and a
binary choice between success and failure.



Coloured Petri Nets   79

State space report for protocol
Statistics
Occurrence Graph

Nodes: 4298
Arcs: 15887
Secs: 53
Status: Full

Scc Graph
Nodes: 2406
Arcs: 11677
Secs: 17

Boundedness Properties
Upper Integer Bounds

A: 1
B: 2
C: 1
D: 2
NextRec: 1
NextSend: 1
RA: 1
RP: 1
Received: 1
Send: 4

Lower Integer Bounds
A: 0
B: 0
C: 0
D: 0
NextRec: 1
NextSend: 1
RA: 1
RP: 1
Received: 1
Send: 4



Coloured Petri Nets   80

State space report (continued)
Upper Multi-set Bounds

A: 1`(1,"Coloured")+ 1`(2," Petri N")+
1`(3,"ets#####")+ 1`(4,"########")

B: 2`(1,"Coloured")+ 2`(2," Petri N")+
2`(3,"ets#####")+ 2`(4,"########")

C: 1`2+ 1`3+ 1`4+ 1`5
D: 2`2+ 2`3+ 2`4+ 2`5
NextRec: 1`1+1`2+1`3+1`4+1`5
NextSend: 1`1+1`2+1`3+1`4+1`5
RA: 1`1
RP: 1`1
Received: 1`""+ 1`"Coloured"+ 1`"Coloured Petri N"+

1`"Coloured Petri Nets#####"
Send: 1`(1,"Coloured")+ 1`(2," Petri N")+

1`(3,"ets#####")+ 1`(4,"########")

Lower Multi-set Bounds
A: empty
B: empty
C: empty
D: empty
NextRec: empty
NextSend: empty
RA: 1`1
RP: 1`1
Received: empty
Send: 1`(1,"Coloured")+ 1`(2," Petri N")+

1`(3,"ets#####")+ 1`(4,"########")



Coloured Petri Nets   81

State space report (continued)
Home Properties

Home Markings: 1 [452]

Liveness Properties

Dead Markings: 1 [452]
Live Transitions: None

Fairness Properties

Send Packet: Impartial
Transmit Packet: Impartial
Receive Packet: No Fairness
Transmit Acknow: No Fairness
Receive Acknow: No Fairness

Generation of the state space report takes only a
few seconds.

• The report contains a lot of useful information
about the behaviour of the CP-net.

• The report is excellent for locating errors or to
increase our confidence in the correctness of the
system.



Coloured Petri Nets   82

Investigation of dead marking
We ask the system to display marking number 452.

452 
8:0

452
NextSend = 5
NextRec = 5
Received = "Coloured Petri Nets#####"

Marking no. 452 is the desired final marking (all
packets has been received in the correct order)

Marking 452 is dead:

• This implies that the protocol is partially correct
(if execution stops it stops in the desired final
marking).

Marking 452 is a home marking:

• This implies that we always have a chance to
finish correctly (it is impossible to reach a state
from which we cannot reach the desired final
marking).



Coloured Petri Nets   83

Investigation of shortest path
We ask the system to calculate one of the shortest
paths from the initial marking to the dead marking:

val path = 
NodesInPath(1,452);

> val path = 
[1,2,3,5,8,11,15,20,27,38,50,
64,80,102,133,164,199,243,
301,375,452] : Node list

Length(path); > 20 : int

The calculated path contains 20 transitions.

• This is as expected because there are 4 packets
which each need 5 transitions to occur.



Coloured Petri Nets   84

Drawing of shortest path
We ask the system to draw the first six nodes in the
calculated shortest path:

DisplayNodePath; [1,2,3,5,8,11]; > () : unit

1 
1:1

1
NextSend = 1
NextRec = 1
Received = ""

2 
1:2

2
NextSend = 1
NextRec = 1
Received = ""
A = 1`(1,"Coloured")

3 
2:2

3
NextSend = 1`1
NextRec = 1`1
Received = ""
B = 1`(1,"Coloured")

5 
3:3

5
NextSend = 1
NextRec = 2
Received = "Coloured"
C = 1`2

8 
3:2

8
NextSend = 1
NextRec = 2
Received = "Coloured"
D = 1`2

11 
5:1

11
NextSend = 2
NextRec = 2
Received = "Coloured"

1->2
SendPack 
{p="Coloured",n=1}

2->3
TranPack 
{s=1,r=1,p="Coloured",n=1}

3->5
RecPack 
{str="",p="Coloured",n=1,k=1}

5->8
TranAck 
{s=1,r=1,n=2}

8->11
RecAck 
{n=2,k=1}



Coloured Petri Nets   85

Draw subgraph
1 

1:1

NextSend = 1
NextRec = 1
Received = ""

2 
1:2

NextSend = 1
NextRec = 1
Received = ""
A = 1`(1,"Coloured")

3 
2:2

NextSend = 1
NextRec = 1
Received = ""
B = 1`(1,"Coloured")

4 
1:3

5 
3:3

NextSend = 1
NextRec = 2
Received = "Coloured"
C = 1`2

9 
2:2

6 
3:4

7 
2:1

8 
3:2

NextSend = 1
NextRec = 2
Received = "Coloured"
D = 1`2

14 
1:2

NextSend = 1
NextRec = 1
Received = ""
A = 1`(1,"Coloured")
B = 2`(1,"Coloured")

13 
4:3

12 
2:2

10 
3:3

NextSend = 1
NextRec = 2
Received = "Coloured"
A = 1`(1,"Coloured")
D = 1`2

11 
5:1

SendPack  

LoosePack  

TranPack  

SendPack  
RecPack  

LoosePack  

TranPack  

RecPack  

LooseAck  

TranAck  

SendPack  

RecPack  

LoosePack  

SendPack  

TranPack  

LooseAck  TranAck  

SendPack  SendPack  

RecAck  



Coloured Petri Nets   86

Non-standard questions
We ask the system to search all arcs in the entire
graph and return the first 10 arcs where NextSend
has a larger value in the source marking than it has
in the destination marking.

PredArcs
      (EntireGraph,
       fn a => ((ms_to_col(Mark.NextSend 1
                  (SourceNode a))) >
                (ms_to_col(Mark.NextSend 1
                  (DestNode a)))),
       10)
end;

>[10179,10167,10165,10159,10055,10052,10035,
10031,10019,10007] : Arc list

2806 
1:4

NextSend = 4
NextRec = 5
Received = "Coloured Petri 
Nets#####"
A = 1`(4,"########")
B = 2`(4,"########")
C = 1`5
D = 1`2+ 1`5

3075 
1:4

NextSend = 2
NextRec = 5
Received = "Coloured 
Petri Nets#####"
A = 1`(4,"########")
B = 2`(4,"########")
C = 1`5
D = 1`5

10179:2806->3075
RecAck = {n=2,k=4}



Coloured Petri Nets   87

Temporal logic
It is also possible to make questions by means of a
CTL-like temporal logic.

Usually CTL focuses on queries about state
properties, e.g.:

• Inv(Pos(M))
checks whether M is a home marking.

• Ev(dead)
checks whether there are any infinite occurrence
sequences.

Our version of CTL also allows queries about
transitions and binding elements.

• Inv(Pos(t in Arc))
checks whether transition t is live.

Timed CP-nets
The computer tools for CP-nets also support state
space analysis of timed CP-nets.



Coloured Petri Nets   88

State spaces – pro/contra
State spaces are powerful and easy to use.

• The main drawback is the state explosion, i.e.,
the size of the state space.

• The present version of our tool handles graphs
with 100,000 nodes and 500,000 arcs. For many
systems this is not sufficient.

Fortunately, it is sometimes possible to construct
much more compact state spaces – without loosing
information.

• This is done by exploiting the inherent
symmetries of the modelled system.

• We define two equivalence relations (one for
markings and one for binding elements).

• The condensed state spaces are often much
smaller (polynomial size instead of exponential).

• The condensed state spaces contain the same
information as the full state spaces.



Coloured Petri Nets   89

Place invariants analysis
The basic idea is similar to the use of invariants in
program verification.

• A place invariant is an expression which is
satisfied for all reachable markings.

• The expression counts the tokens of the marking
– using a specified set of weights.

We first construct a set of place invariants.

Then we check whether they are fulfilled.

• This is done by showing that each occurring
binding element respects the invariants.

• The removed set of tokens must be identical to
the added set of tokens – when the weights are
taken into account.

Finally, we use the place invariants to prove
behavioural properties of the CP-net.

• This is done by a mathematical proof.



Coloured Petri Nets   90

Example of place invariants

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

e

if x=q then 1`e
else empty

case x of
  p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
  p => 2`e
| q => 1`e

AP

3`(q,0)

BP

2`(p,0)

CP

D	P

EP

T1

T2

T3

T4

T5

R

E

1`e

S

E

3`e

T

E

2`e

INV

1: PR1

INV

1: PR1
2: Q
3: 2*P+2*Q

INV

1: PR1
3: 2*P+2*Q
4: P

INV

1: PR1
3: 2*P+2*Q
4: 2*P+Q

INV

2: ID

INV

3: ID

INV

4: ID

INVARIANTS

1: 2`p+3`q : U
2: 1`e : E
3: 3`e : E
4: 2`e : E

INV

1: PR1
2: Q
3: Q



Coloured Petri Nets   91

Place invariants for resource
allocation system
To specify the weights we use three functions:

• PR1 is a projection function: (x,i) --> x.

• P is an indicator function: (p,i) --> 1`e; (q,i) -->Ø.

• Q is an indicator function: (p,i) --> Ø; (q,i) -->1`e.

• P and Q “counts” the number of p and q tokens.

PR1(M(A)+M(B)+M(C)+M(D)+M(E)) = 2`p+3`q

M(R) + Q(M(B)+M(C)) = 1`e

M(S) + Q(M(B)) +
(2*P+2*Q)(M(C)+M(D)+M(E)) = 3`e

M(T) + P(M(D)) + (2*P+Q)(M(E)) = 2`e



Coloured Petri Nets   92

A more readable version of the
place invariants

PR1(A+B+C+D+E) = 2`p+3`q

R + Q(B+C) = 1`e

S + Q(B) + (2*P+2*Q)(C+D+E) = 3`e

T + P(D) + (2*P+Q)(E) = 2`e

The place invariants can be used to prove
properties of the resource allocation system, e.g.,
that it is impossible to reach a dead marking.



Coloured Petri Nets   93

Tool support for place invariants
Check of place invaritans:

• The user proposes a set of weights.

• The tool checks whether the weights constitute a
place invariant.

Automatic calculation of all place invariants:

• This is possible, but it is a very complex task.

• Moreover, it is difficult to represent the results
on a useful form, i.e., a form which can be used
by the system designer.

Interactive calculation of place invaritans:

• The user proposes some of the weights.

• The tool calculates the remaining weights
– if possible.

Interactive calculation of place invariants is much
easier than a fully automatic calculation.



Coloured Petri Nets   94

How to use place invariants
Invariants in ordinary programming languages:

• No one would construct a large program
– and then expect afterwards to be able to
calculate invariants.

• Instead invariants are constructed together with
the program.

For CP-nets we should do the same:

• During the system specification and modelling
the designer gets a lot of knowledge about the
system.

• Some of this knowledge can easily be formulated
as place invariants.

• The invariants can be checked and in this way it
is possible to find errors.

• It can be seen where the errors are.

Some prototypes of computer tools for invariants
analysis do exist. However, none of them are at a
state where they can be widely used.



Coloured Petri Nets   95

Place invariants – pro/contra
From place invariants it is possible to prove many
kinds of behavioural properties.

• Invariants can be used to make modular
verification – because it is possible to combine
invariants of the individual pages.

• Invariants can be used to verify large systems
– without computational problems.

• The user needs some ingenuity to construct
invariants. This can be supported by computer
tools – interactive process.

• The user also needs some ingenuity to use
invariants. This can also be supported by
computer tools – interactive process.

• Invariants can be used to verify a system
– without fixing the system parameters (such as
the number of sites in the data base system).



Coloured Petri Nets   96

Conclusion
One of the main reasons for the success of CP-nets
is the fact that we – simultaneously – have worked
with:

 

 TOOLS
 • editing
 • simulation
 •	verificationTHEORY

• models
• basic concepts
• verification methods

 PRACTICAL USE
 • specification
 • investigation
 • verification
 •	implementation



Coloured Petri Nets   97

More information on CP-nets
The following WWW pages contain a lot of in-
formation about CP-nets and their computer tools:

http://www.daimi.aau.dk/CPnets/

A detailed introduction to CP-nets can be found in
the following papers/books:
K. Jensen: Coloured Petri Nets: A High-level Language for System
Design and Analysis. In: G. Rozenberg (ed.): Advances in Petri Nets
1990, Lecture Notes in Computer Science Vol. 483, Springer-
Verlag 1991, 342– 416. Also in K. Jensen, G. Rozenberg (eds.):
High-level Petri Nets. Theory and Application. Springer-Verlag,
1991, 44 –122.

K. Jensen: An Introduction to the Theoretical Aspects of Coloured
Petri Nets. In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg
(eds.): A Decade of Concurrency, Lecture Notes in Computer
Science vol. 803, Springer-Verlag 1994, 230-272.

K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use. Monographs in Theoretical Computer Science,
Springer-Verlag.

• Vol. 1: Basic Concepts, 1992, ISBN: 3-540-60943-1.
• Vol. 2: Analysis Methods, 1994, ISBN: 3-540-58276-2.
• Vol. 3: Practical Use, 1996.

Some of the most important papers on high-level
nets, their verification methods and applications
have been reprinted in:
K. Jensen, G. Rozenberg (eds.): High-level Petri Nets. Theory and
Application. Springer-Verlag, 1991, ISBN: 3-540-54125-X.



Coloured Petri Nets   98

Different examples of the industrial use of CP-nets
can be found in:
G. Balbo, S.C. Bruell, P. Chen, G. Chiola: An Example of Modelling
and Evaluation of a Concurrent Program Using Colored Stochastic
Petri Nets: Lamport’s Fast Mutual Exclusion Algorithm. IEEE
Transactions on Parallel and Distributed Systems, 3 (1992). Also in
K. Jensen, G. Rozenberg (eds.): High-level Petri Nets. Theory and
Application. Springer-Verlag, 1991, 533–559.

J. Berger, L. Lamontagne: A Colored Petri Net Model for a Naval
Command and Control System. In: M. Ajmone-Marsan (ed.):
Application and Theory of Petri Nets 1993. Proceedings of the 14th
International Petri Net Conference, Chicago 1993, Lecture Notes in
Computer Science Vol. 691, Springer-Verlag 1993, 532–541.

C. Capellmann, H. Dibold: Petri Net Based Specifications of
Services in an Intelligent Network. Experiences Gained from a Test
Case Application. In: M. Ajmone-Marsan (ed.): Application and
Theory of Petri Nets 1993. Proceedings of the 14th International
Petri Net Conference, Chicago 1993, Lecture Notes in Computer
Science Vol. 691, Springer-Verlag 1993, 542–551.

L. Cherkasova, V. Kotov, T. Rokicki: On Net Modelling of
Industrial Size Concurrent Systems. In: M. Ajmone-Marsan (ed.):
Application and Theory of Petri Nets 1993. Proceedings of the 14th
International Petri Net Conference, Chicago 1993, Lecture Notes in
Computer Science Vol. 691, Springer-Verlag 1993, 552–561.

L. Cherkasova, V. Kotov, T. Rokicki: On Scalable Net Modeling of
OLTP. In PNPM93: Petri Nets and Performance Models.
Proceedings of the 5th International Workshop, Toulouse, France
1993, IEEE Computer Society Press, 270–279.

S. Christensen, L.O. Jepsen: Modelling and Simulation of a Network
Management System Using Hierarchical Coloured Petri Nets.
In: E. Mosekilde (ed.): Modelling and Simulation 1991. Proceedings
of the 1991 European Simulation Multiconference, Copenhagen,
1991, Society for Computer Simulation 1991, 47–52.



Coloured Petri Nets   99

H. Clausen, P.R. Jensen: Validation and Performance Analysis of
Network Algorithms by Coloured Petri Nets. In PNPM93: Petri Nets
and Performance Models. Proceedings of the 5th International
Workshop, Toulouse, France 1993, IEEE Computer Society Press,
280–289.

G. Florin, C. Kaiser, S. Natkin: Petri Net Models of a Distributed
Election Protocol on Undirectional Ring. Proceedings of the 10th
International Conference on Application and Theory of Petri Nets,
Bonn 1989, 154 –173.

H.J. Genrich, R.M. Shapiro: Formal Verification of an Arbiter
Cascade. In: K. Jensen (ed.): Application and Theory of Petri Nets
1992. Proceedings of the 13th International Petri Net Conference,
Sheffield 1992, Lecture Notes in Computer Science Vol. 616,
Springer-Verlag 1992, 205–223.

P. Huber, V.O. Pinci: A Formal Executable Specification of the
ISDN Basic Rate Interface. Proceedings of the 12th International
Conference on Application and Theory of Petri Nets, Aarhus 1991,
1–21.

W.W. McLendon, R.F. Vidale: Analysis of an Ada System Using
Coloured Petri Nets and Occurrence Graphs. In: K. Jensen (ed.):
Application and Theory of Petri Nets 1992. Proceedings of the 13th
International Petri Net Conference, Sheffield 1992, Lecture Notes in
Computer Science Vol. 616, Springer-Verlag 1992, 384–388.

K.H. Mortensen, V. Pinci: Modelling the Work Flow of a Nuclear
Waste Management Program. Proceedings of the 15th International
Petri Net Conference, Zaragoza 1994, Lecture Notes in Computer
Science, Springer-Verlag 1994

V.O. Pinci, R.M. Shapiro: An Integrated Software Development
Methodology Based on Hierarchical Colored Petri Nets. In:
G. Rozenberg (ed.): Advances in Petri Nets 1991, Lecture Notes in
Computer Science Vol. 524, Springer-Verlag 1991, 227–252. Also
in K. Jensen, G. Rozenberg (eds.): High-level Petri Nets. Theory
and Application. Springer-Verlag, 1991, 649– 667.



Coloured Petri Nets   100

G. Scheschonk, M. Timpe: Simulation and Analysis of a Document
Storage System. In: R. Valette (ed.): Application and Theory of Petri
Nets 1994. Proceedings of the 15th International Petri Net
Conference, Zaragoza 1994, Lecture Notes in Computer Science
vol. 815, Springer-Verlag 1992, 454–470.

R.M. Shapiro: Validation of a VLSI Chip Using Hierarchical
Coloured Petri Nets. Journal of Microelectronics and Reliability,
Special Issue on Petri Nets, Pergamon Press, 1991. Also in K.
Jensen, G. Rozenberg (eds.): High-level Petri Nets. Theory and
Application. Springer-Verlag, 1991, 667– 687.


